Capacity and Absolute Abel Summability of Multiple Fourier Series

Gary E. Lippman
Department of Mathematics, California State University, Hayward, California 94542

AND

Victor L. Shapiro*
Department of Mathematics, University of California, Riverside, California 92502
Communicated by Oved Shisha

1. Introduction

Operating in Euclidean N-space, $N \geqslant 2$, we shall use the following notation: $x=\left(x_{1}, \ldots, x_{N}\right),(x, y)=x_{1} y_{1}+\cdots+x_{N} y_{N},|x|=(x, x)^{1 / 2}$, and $\alpha x+\beta y=\left(\alpha x_{1}+\beta y_{1}, \ldots, \alpha x_{N}+\beta y_{N}\right) . B(x, r), r>0$, will designate the open N-ball with center x and radius r and $T_{N}=\left\{x:-\pi \leqslant x_{j}<\pi, j=1, \ldots, N\right\}$ will designate the N -dimensional torus.

For f in $L^{1}\left(T_{N}\right)$ and m an integral lattice point, we shall set

$$
f^{\wedge}(m)=(2 \pi)^{-N} \int_{T_{N}} e^{-i(m, x)} f(x) d x .
$$

$\mathscr{M}\left(T_{N}\right)$ will designate the class of finite Borel measures on T_{N}, and, for μ in $\mathscr{M}\left(T_{N}\right)$, we shall set

$$
\mu^{\wedge}(m)=(2 \pi)^{-N} \int_{T_{N}} e^{-i(m, x)} d \mu(x)
$$

For $t>0$, we introduce the function

$$
\begin{equation*}
H(x, t)=\sum_{m \neq 0} e^{i(m, x)-|m| t /|m|^{2}} \tag{1.1}
\end{equation*}
$$

[^0]and observe from [7, Lemma 8] that
\[

$$
\begin{align*}
\lim _{t \rightarrow 0} H(x, t) & =H(x) \text { exists and is finite for } x \text { in } E_{N}-\bigcup_{m}\{2 \pi m ; \tag{1.2}\\
\lim _{t \rightarrow 0} H(2 \pi m, t) & =-H(2 \pi m)=\cdots \infty .
\end{align*}
$$
\]

We also observe from this reference that the following hold:

$$
\begin{equation*}
H(x)-\left.x\right|^{2} / 2 N \text { is harmonic in } E_{N}-\bigcup_{m}\{2 \pi m\} ; \tag{1.3}
\end{equation*}
$$

there are positive finite constants b_{N} and $b_{N}{ }^{\prime}$ such that

$$
\begin{align*}
\sup _{x \operatorname{in} T_{N-0}} H(x)-b_{N}|x|^{2-N} \mid \leqslant b_{N}^{\prime} & \text { for } N \geqslant 3, \\
\sup _{x \operatorname{in} T_{N^{-0}}}\left|H(x)-b_{N} \log (1 / \mid x)\right| \leqslant b_{N}^{\prime} & \text { for } N=2 ; \tag{1.4}
\end{align*}
$$

$H(x)$ is in $L^{1}\left(T_{N}\right)$,

$$
\begin{equation*}
H^{\wedge}(m)=|m|^{-2} \quad \text { for } \quad m \neq 0, \quad \text { and } \quad H^{\wedge}(0)==0 \text {. } \tag{1.5}
\end{equation*}
$$

Let $Z \subset T_{N}$ be a set closed in the torus topology. Following the classical concepts concerning capacity theory and in view of (1.3) and (1.4), we shall say Z is of ordinary capacity zero if

$$
\int_{T_{N}} \int_{T_{N}} H(x-y) d \mu(x) d \mu(y)=+\infty
$$

for every nonnegative μ in $\mathscr{M}\left(T_{N}\right)$ of total mass one having its support contained in Z, i.e., $\mu(Z)=1$ and $\mu\left(T_{N}-Z\right)=0$.

In view of [3, pp. 3 and 24], we shall say an analytic set $A \subset T_{N^{*}}$ is of ordinary capacity zero if every set $Z \subset A$ which is closed in the torus topology is of ordinary capacity zero.

Next for f in $L^{1}\left(T_{N}\right)$, we shall set

$$
\begin{equation*}
f(x, t)=\sum_{m} f^{\wedge}(m) e^{i(m, x)-|m| t} \quad \text { for } \quad t>0 \tag{1.6}
\end{equation*}
$$

and refer to $f(x, t)$ as the Abelian means of f. We observe that for fixed x^{0}, $f\left(x^{0}, t\right)$ is in $C^{\infty}(0, \infty)$ as a function of t. Consequently, following the classical terminology (see [8, p. 83]) we shall say the Fourier series of f is absolutely Abel summable at x^{0} if

$$
\begin{equation*}
\int_{0}^{1}\left|\partial f\left(x^{0}, t\right) / \partial t\right| d t<\infty \tag{1.7}
\end{equation*}
$$

It is easy to see that if (1.7) holds, then $\lim _{t \rightarrow 0} f\left(x^{0}, t\right)$ exists and is finite.

Motivated by the one-dimensional work of Beurling (see [5, pp. 47 and 49] and [1]), we intend to establish the following two theorems connecting absolute Abel summability with ordinary capacity.

Theorem 1. Let $Z \subset T_{N}$ be closed in the torus topology, and let f be in $L^{1}\left(T_{N}\right)$. Suppose that
(i) $\left.\sum_{m}\left|m_{i}^{2}\right| f^{\wedge}(m)\right|^{2}<+\infty$
and
(ii) $\int_{0}^{1}|\partial f(x, t) / \partial t| d t=+\infty$ for x in Z.

Then Z is of ordinary capacity zero.
Theorem 2. Let $Z \subset T_{N}$ be closed in the torus topology and suppose that Z is of ordinary capacity zero. Then there exists an f in $L^{1}\left(T_{N}\right)$ with $\sum_{m}|m|^{2}\left|f^{\wedge}(m)\right|^{2}<+\infty$ such that

$$
\int_{0}^{1}|\partial f(x, t) / \partial t| d t=+\infty \quad \text { for } x \text { in } Z
$$

(For Theorem 2, see also [6].)
It is easy to see that for f in $L^{1}\left(T_{N}\right)$, the set $\left\{x: x\right.$ in T_{N} and $\left.\int_{0}^{1}|\hat{c} f(x, t) / \hat{c} t| d t=+\infty\right\}$ is a G_{δ}-set in the torus topology. Consequently, we obtain as an immediate corollary to Theorem 1, the following corollary.

Corollary 1. Let f be in $L^{1}\left(T_{N}\right)$ and suppose that $\sum_{m}|m|^{2}\left|f^{\wedge}(m)\right|^{2}<\infty$. Then the Fourier series of f is absolutely Abel summable except possibly on a set of ordinary capacity zero.

It is also easy to show using Theorem 1 that under the same hypothesis as Corollary 1, the Fourier series of f is spherically convergent except possibly on a set of ordinary capacity zero. We leave the proof of this fact to the interested reader.

2. Proof of Theorem 1

In order to prove Theorem 1, we set

$$
\begin{equation*}
G(x, t)=\sum_{m \neq 0} e^{i(m, x)-|m| t} /|m| \quad \text { for } \quad t>0 \tag{2.1}
\end{equation*}
$$

and establish the following facts:

$$
\begin{equation*}
\lim _{t \rightarrow 0} G(x, t)=G(x) \text { exists in } E_{N} \tag{2.2}
\end{equation*}
$$

$G(x)$ is continuous in

$$
\begin{equation*}
E_{N}-\bigcup_{m}\{2 \pi m\} \quad \text { and } \quad G(2 \pi m)=+\infty \tag{2.3}
\end{equation*}
$$

$G(x)$ is in $L^{1}\left(T_{N}\right)$, and for $t>0, G(x, t)$ is the Abelian means of G;
$G(x)+\alpha_{N} \geqslant 0$ for x in E_{N} where

$$
\begin{gather*}
\alpha_{N}=2+\max _{\propto \operatorname{in} T_{n}}|G(x, 1)| \tag{2.5}\\
\int_{0}^{1}|\partial G(x, t) / \partial t| d t \leqslant G(x)+\alpha_{N} \quad \text { for } x \text { in } E_{N} \tag{2.6}
\end{gather*}
$$

In the sequel, we shall also use the notation $\partial G(x, t) / \partial t=G_{t}(x, t)$.
In order to establish (2.2), we first observe from (2.1) and [2, p. 32] that for $t>0$

$$
\begin{align*}
-G_{t}(x, t) & =\sum_{i n \neq 0} e^{i(m, x)-|m| t} \tag{2.7}\\
& =\gamma_{N} \sum_{m 2} t\left\{t^{2}+|2 \pi m+x|^{2}\right\}^{-(N+1) / 2}-1
\end{align*}
$$

where γ_{N} is a positive constant.
Given x^{0} in $E_{N}-\bigcup_{m}\{2 \pi m\}$, we see from (2.7) that there exists $h_{0}>0$ such that $\left|G_{t}(x, t)\right|$ is uniformly bounded for x in $B\left(x^{0}, h_{0}\right)$ and $0<t<1$. Consequently, $G(x, t)$ satisfies a uniform Cauchy criterion as $t \rightarrow 0$ for x in $B\left(x^{0}, h_{0}\right)$, and both (2.2) and (2.3) are established for x in $E_{N}-\bigcup_{m}\{2 \pi m\}$. Obviously, $\lim _{t \rightarrow 0} G(2 \pi m, t)=+\infty$; so (2.2) and (2.3) are entirely established.

To establish (2.4), we observe from (2.7) that there is a constant K such that

$$
\begin{equation*}
\left|G_{t}(x, t)+\gamma_{N} t\left(t^{2}+|x|^{2}\right)^{-(N+1) / 2}\right| \leqslant K \tag{2.8}
\end{equation*}
$$

for x in $T_{N}-0$ and $0<t \leqslant 1$.
Observing that $G(x, 1)$ is a continuous periodic function in E_{N}, we conclude from (2.8) that there is a constant K^{\prime} such that

$$
\begin{equation*}
\left|G(x, t)-\gamma_{N}(N-1)^{-1}\left(t^{2}+|x|^{2}\right)^{(1-N) / 2}\right| \leqslant K^{\prime} \tag{2.9}
\end{equation*}
$$

for x in $T_{N}-0$ and $0<t<1$.
From (2.9), we obtain that

$$
\begin{equation*}
|G(x, t)| \leqslant K^{\prime}+\gamma_{N}(N-1)^{-1}|x|^{1-N} \tag{2.10}
\end{equation*}
$$

for x in $T_{N}-0$ and $0<t \leqslant 1$.

Observing first that the expression on the right side of the inequality in (2.10) is $L^{1}\left(T_{N}\right)$ and next from (2.2) that $G(x, t) \rightarrow G(x)$ for x in $T_{N}-0$ as $t \rightarrow 0$, we conclude from (2.10) that

$$
\begin{equation*}
G(x) \text { is } L^{1}\left(T_{N}\right) \tag{2.11}
\end{equation*}
$$

and, furthermore, that

$$
\begin{equation*}
\int_{T_{N}}|G(x, t)-G(x)| d x \rightarrow 0 \quad \text { as } \quad t \rightarrow 0 \tag{2.12}
\end{equation*}
$$

Equation (2.11) is the same as the first part of (2.4). Also (2.1), (2.11), and (2.12) imply that $G^{\wedge}(m)=|m|^{-1}$ for $m \neq 0$ and $G^{\wedge}(0)=0$. This gives us the second part of (2.4), and (2.4) is completely established.

To establish (2.5), we observe from (2.7) that for x in E_{N} and $0<t<1$

$$
\begin{align*}
G(x, t)-G(x, 1)+(1-t)= & \gamma_{N}(N-1)^{-1} \sum_{m}\left\{\left(t^{2}+|2 \pi m+x|^{2}\right)^{(1-N) / 2}\right. \\
& \left.-\left(1+|2 \pi m+x|^{2}\right)^{(1-N) / 2}\right\} \tag{2.13}
\end{align*}
$$

We conclude from (2.13) that for x in E_{N} and $0<t<1$, $G(x, t)-G(x, 1)+(1-t) \geqslant 0$. But then we have from (2.2) that

$$
\begin{equation*}
G(x)-G(x, 1)+1 \geqslant 0 \quad \text { for } \quad x \text { in } E_{N} . \tag{2.14}
\end{equation*}
$$

Observing once again that $G(x, 1)$ is a continuous periodic function, we see that (2.5) follows immediately from (2.14).

To establish (2.6), we observe from (2.7) that for x in E_{N} and $t>0$,

$$
\begin{equation*}
\left|G_{t}(x, t)\right| \leqslant 2-G_{t}(x, t) \tag{2.15}
\end{equation*}
$$

Consequently, we conclude from (2.2), (2.3), and (2.15) that

$$
\begin{equation*}
\int_{0}^{1}\left|G_{t}(x, t)\right| d t \leqslant 2+G(x)-G(x, 1) \tag{2.16}
\end{equation*}
$$

for x in E_{N}. Equation (2.6) follows immediately from (2.16).
We are now ready to prove the theorem. Assume to the contrary that Z has positive ordinary capacity. Then it follows that there is a non-negative Borel measure μ in $\mathscr{M}\left(T_{N}\right)$ such that

$$
\begin{equation*}
\mu(Z)=1 \quad \text { and } \quad \mu\left(T_{N}-Z\right)=0 \tag{2.17}
\end{equation*}
$$

and, furthermore, such that

$$
\begin{equation*}
\int_{Z} \int_{Z} H(x-y) d \mu(x) d \mu(y)<+\infty \tag{2.18}
\end{equation*}
$$

Next, we observe from condition (i) in the hypothesis of the theorem that there exists F in $L^{2}\left(T_{N}\right)$ such that

$$
\begin{equation*}
F^{\wedge}(m)=|m| f^{\wedge}(m) \quad \text { for every } m \tag{2.19}
\end{equation*}
$$

It follows from (1.6) that for $t>0$,

$$
\begin{equation*}
f_{t}(x, t)=-\sum_{m}|m| f^{\wedge}(m) e^{i(m, x)-\{m \mid t} \tag{2.20}
\end{equation*}
$$

From (2.7), (2.19), and (2.20), we conclude that for $t>0$,

$$
f_{t}(x, t)=(2 \pi)^{-N} \int_{\tau_{N}} F(y) G_{t}(x-y, t) d y
$$

But then

$$
\int_{0}^{1}\left|f_{t}(x, t)\right| d t \leqslant(2 \pi)^{-N} \int_{r_{N}}|F(y)|\left[\int_{0}^{1}\left|G_{t}(x-y, t)\right| d t\right] d y
$$

From (2.5) and (2.6), we in turn obtain from this last fact that

$$
\int_{0}^{1}\left|f_{t}(x, t)\right| d t \leqslant(2 \pi)^{-N} \int_{T_{N}}|F(y)|\left[G(x-y)+\alpha_{N}\right] d y
$$

and we conclude that

$$
\begin{align*}
& \int_{Z}\left[\int_{0}^{1}\left|f_{t}(x, t)\right| d t\right] d \mu(x) \\
& \quad \leqslant(2 \pi)^{-N} \int_{T_{N}}|F(y)|\left\{\int_{Z}\left[G(x-y)+\alpha_{N}\right] d \mu(x)\right\} d y \tag{2.21}
\end{align*}
$$

Next, we observe from (2.1)-(2.5), (2.7), and (2.9) that for x and z in T_{N},

$$
\begin{align*}
\int_{T_{N}} & {\left[G(x-y)+\alpha_{N}\right]\left[G(z-y)+\alpha_{N}\right] d y } \\
& =\lim _{t \rightarrow 0} \int_{T_{N}}\left[G(x-y, t)+\alpha_{N}\right]\left[G(z-y, t)+\alpha_{N}\right] d y \tag{2.22}
\end{align*}
$$

On the other hand, an easy computation using (2.1), (1.1), and (1.2) shows that the expression on the right side of the equality in (2.22) is equal to $(2 \pi)^{N}\left[H(x-z)+\alpha_{N}{ }^{2}\right]$.

We, consequently, conclude from this fact, (2.22), and Fubini's theorem that

$$
\begin{align*}
& \int_{T_{N}}\left\{\int_{Z}\left[G(x-y)+\alpha_{N}\right] d \mu(x)\right\}^{2} d y \\
& \quad=(2 \pi)^{N} \int_{Z} \int_{Z}\left[H(x-z)+\alpha_{N}^{2}\right] d \mu(x) d \mu(z) \tag{2.23}
\end{align*}
$$

From (2.18) we have that the expression on the right side of (2.23) is finite. We, consequently, conclude from (2.23) that

$$
\begin{equation*}
\int_{z}\left[G(x-y)+\alpha_{N}\right] d \mu(x) \text { is in } L^{2}\left(T_{N}\right) \tag{2.24}
\end{equation*}
$$

Next, we combine (2.19) with (2.24) and conclude from (2.21) and Schwartz's inequality that

$$
\begin{equation*}
\int_{z}\left[\int_{0}^{1}\left|f_{t}(x, t)\right| d t\right] d \mu(x)<+\infty \tag{2.25}
\end{equation*}
$$

On the other hand, we have from condition (i) in the hypothesis of the theorem and from (2.17) that

$$
\begin{equation*}
\int_{Z}\left[\int_{0}^{1}\left|f_{t}(x, t)\right| d t\right] d \mu(x)=+\infty \tag{2.26}
\end{equation*}
$$

Equations (2.25) and (2.26) are mutually contradictory. Consequently, Z must be of ordinary capacity zero and the proof of the theorem is complete.

3. Proof of Theorem 2

With $H(x)$ defined as in (1.2), we see from (1.3) and (1.4) that there is a positive constant η_{N} such that

$$
\begin{equation*}
H(x)+\eta_{N} \geqslant 1 \quad \text { for all } \quad x \text { in } T_{N} \tag{3.1}
\end{equation*}
$$

We set

$$
\begin{equation*}
\Phi(x)=H(x)+\eta_{N} \tag{3.2}
\end{equation*}
$$

and observe in particular that

$$
\begin{align*}
& \Phi^{\wedge}(0)=\eta_{N}>0, \\
& \Phi^{\wedge}(m)=|m|^{-2} \quad \text { for } \quad m \neq 0 . \tag{3.3}
\end{align*}
$$

Next, we set

$$
\begin{equation*}
\Phi(x, t)=\sum_{m} \Phi^{\wedge}(m) e^{i(m, x)-|m| t} \tag{3.4}
\end{equation*}
$$

and observe from (2.1) and (3.3) that for $t>0$

$$
\begin{equation*}
\Phi_{t}(x, t)=-G(x, t) \tag{3.5}
\end{equation*}
$$

From [7, p. 56 (17)], we see that if a periodic function is nonnegative on T_{N}, its Abelian means are also nonnegative on T_{A}. As a consequence of this fact, (2.5), (3.5) and the mean value theorem, we conclude that for $t>0$ and x in T_{N},

$$
\begin{equation*}
0 \leqslant \Phi(x, t) \leqslant \Phi(x) \tag{3.6}
\end{equation*}
$$

where α_{N} is the positive constant in (2.5).
It follows from (3.3), (3.4), (3.6), and Fatou's lemma that if μ is a nonnegative measure in $\mathscr{M}\left(T_{N}\right)$ then

$$
\begin{equation*}
\int_{T_{N}} \int_{T_{N}} \Phi(x-y) d \mu(x) d \mu(y)=(2 \pi)^{2 N} \sum_{m} \Phi^{\wedge}(m)\left|\mu^{\wedge}(m)\right|^{2} . \tag{3.7}
\end{equation*}
$$

We designate the double integral on the left side of the equality in (3.7) by $I(\mu)$.

To establish the theorem, let $Z \subset T_{N}$ be a set closed in the torus topology and of ordinary capacity zero. By $B^{T}(x, \rho)$, we designate the open N-ball with center x and radius ρ in the torus topology, i.e., for x in T_{N}, $B^{T}(x, \rho)=\left\{y: y\right.$ in T_{N} and there exists y^{\prime} such that $y^{\prime} \equiv y \bmod 2 \pi$ in each variable and $\left.\left|x-y^{\prime}\right|<\rho\right\}$.

Next we let $\left\{B^{T}(x, \rho): x\right.$ in $\left.Z\right\}$ be an open covering of Z in the torus topology. For each ρ with $0<\rho<1$, we extract a finite subcovering which contains the least number of balls $B^{T}(x, \rho)$. We define Z_{ρ} to be the closure in the torus topology of the union of the balls making the selected finite sub-covering.

For each ρ, with $0<\rho<1, Z_{\rho}$ has positive Lebesgue measure and, therefore, positive ordinary capacity. Using the techniques given in the theorem in [4, p. 33], it follows from (1.3) and (1.4) and from (3.1) and (3.2) that there exists a nonnegative measure μ_{ρ} in $\mathscr{M}\left(T_{N}\right)$ of total mass one having its support in Z_{ρ} such that the equilibrium potential

$$
U_{\rho}(x)=\int_{Z_{\rho}} \Phi(x-y) d \mu_{\rho}(y)
$$

is a continuous periodic function in E_{N} taking a constant value on Z_{ρ}. Furthermore, it follows that this constant value is equal to $I\left(\mu_{\rho}\right)$ where

$$
\begin{equation*}
I\left(\mu_{\rho}\right)=\int_{z_{\rho}} \int_{z_{\rho}} \Phi(x-y) d \mu_{\rho}(x) d \mu_{\rho}(y) \tag{3.8}
\end{equation*}
$$

Since each μ_{ρ} has total mass one, it follows from weak $*$ convergence that

$$
\begin{equation*}
\lim _{\rho \rightarrow 0} I\left(\mu_{\rho}\right)=+\infty \tag{3.9}
\end{equation*}
$$

For otherwise, there would exist a nonnegative measure μ in $\mathscr{M}\left(T_{N}\right)$ of total mass one having its support in Z and such that

$$
\int_{z} \int_{z} \Phi(x-y) d \mu(x) d \mu(y)<+\infty,
$$

which is clearly a contradiction to the fact that Z has ordinary capacity zero (see (3.2) and the definition given in Section 1).

Next, we introduce the real Hilbert space $O Z\left(T_{N}\right)$. We say f is in $O Z\left(T_{N}\right)$ if f is a real-valued function in $L^{2}\left(T_{N}\right)$ such that

$$
\begin{equation*}
\|f\|_{\Phi}^{2}=\sum_{m}\left|f^{\wedge}(m)\right|^{2}\left|\Phi^{\wedge}(m)\right|^{-1}<+\infty . \tag{3.10}
\end{equation*}
$$

Clearly $O\left(T_{N}\right)$ is a real Hilbert space where the inner product $(f, g)_{\Phi}$ is given by

$$
(f, g)_{\Phi}=\sum_{m} f^{\wedge}(m) g^{\wedge}(-m)\left|\Phi^{\wedge}(m)\right|^{-1} .
$$

As mentioned above the equilibrium potential $U_{o}(x)$ which is defined for all x by the integral

$$
\begin{equation*}
U_{\rho}(x)=\int_{Z_{\rho}} \Phi(x-y) d \mu_{\rho}(y) \tag{3.11}
\end{equation*}
$$

is such that

$$
\begin{equation*}
U_{\rho}(x)=I\left(\mu_{\rho}\right) \quad \text { for } x \text { in } Z_{\rho}, \tag{3.12}
\end{equation*}
$$

where $I\left(\mu_{\rho}\right)$ is defined in (3.8).
Also, since μ_{ρ} has its support in Z_{ρ}, we see from (3.11) that

$$
\begin{equation*}
U_{\rho}^{\wedge}(m)=(2 \pi)^{N} \Phi^{\wedge}(m) \mu_{\rho}^{\wedge}(m) . \tag{3.13}
\end{equation*}
$$

Consequently, it follows from (3.7), (3.8), (3.10), and (3.13) that

$$
\begin{equation*}
\left\|U_{\rho}\right\|_{\Phi}^{2}=I\left(\mu_{\rho}\right) . \tag{3.14}
\end{equation*}
$$

Next, using (3.9) we select a sequence $\{\rho(j)\}_{j=1}^{\infty}$ such that

$$
\begin{equation*}
I\left(\mu_{\rho(j)}\right) / j^{4} \rightarrow+\infty \quad \text { as } \quad j \rightarrow+\infty, \tag{3.15}
\end{equation*}
$$

and we set

$$
\begin{equation*}
f_{k}(x)=\sum_{j=1}^{k} U_{\rho(j)}(x) / j^{2}\left[I\left(\mu_{\rho(j)}\right)\right]^{1 / 2} . \tag{3.16}
\end{equation*}
$$

Since $O l\left(T_{N}\right)$ is a Hilbert space with respect to the norm $\|_{\Phi}$ given in (3.10), it follows from (3.14) and (3.16) that there is an f in $C r\left(T_{N}\right)$ such that

$$
\begin{equation*}
\mid f_{k}-f a \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty \tag{3.17}
\end{equation*}
$$

Also it follows from (3.3) and (3.10) that

$$
\begin{equation*}
\sum_{m}\left|f^{\wedge}(m)\right|^{2}|m\rangle^{2}<+\infty \tag{3.18}
\end{equation*}
$$

To complete the proof of Theorem 2 we need only show

$$
\begin{equation*}
\int_{0}^{1}|\partial f(x, t) / o t| d t=+\infty \quad \text { for } x \text { in } Z \tag{3.19}
\end{equation*}
$$

Since $|f(x, 1)-f(x, t)| \leqslant \int_{t}^{1}|\delta f(x, s) / \partial s| d s$, (3.19) will follow once we show

$$
\begin{equation*}
\lim _{t \rightarrow 0} f(x, t)=+\infty \quad \text { for } x \text { in } Z \tag{3.20}
\end{equation*}
$$

In order to establish (3.20), we observe from (3.3), (3.10), and (3.17) that

$$
\begin{equation*}
\int_{\tau_{N}}\left|f_{k}(x)-f(x)\right|^{2} d x \rightarrow 0 \quad \text { as } \quad k \rightarrow+\infty \tag{3.21}
\end{equation*}
$$

Next, we set for $t>0$

$$
\begin{equation*}
P(x, t)=\sum_{m} e^{i(m, x)-|m| t} \tag{3.22}
\end{equation*}
$$

and observe from (2.7) that $P(x, t)=-G_{t}(x, t)+1$. Consequently, it follows from (2.7) that for fixed positive $t, P(x, t)$ is a continuous periodic function of x. Furthermore, we have from (1.5) and (3.22) that

$$
\begin{equation*}
f_{k}(x, t)=(2 \pi)^{-N} \int_{\tau_{N}} f_{k}(x-y) P(y, t) d y \tag{3.23}
\end{equation*}
$$

We conclude, consequently, from (3.21) and (3.23) that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} f_{k}(x, t)=f(x, t) \quad \text { for } x \text { in } T_{N} \text { and } t>0 \tag{3.24}
\end{equation*}
$$

Next, we recall that $\mu_{\rho(j)}$ is a nonnegative measure in $\mathscr{M}\left(T_{N}\right)$. Consequently, it follows from (3.1), (3.2), (3.11), and (3.16) that for each positive integer k

$$
\begin{equation*}
0 \leqslant f_{k}(x) \leqslant f_{l i+1}(x) \quad \text { for } x \text { in } T_{N} \tag{3.25}
\end{equation*}
$$

From (2.7) and (3.22), we see that for $t>0, P(x, t)>0$ for x in T_{N}. We obtain, therefore, from (3.23) and (3.25) that for x in T_{N} and $t>0$,

$$
\begin{equation*}
f_{k}(x, t) \leqslant f_{k+1}(x, t) \quad \text { for } \quad k=1,2, \ldots . \tag{3.26}
\end{equation*}
$$

From (3.24) and (3.26), we finally obtain
$f(x, t) \geqslant f_{k}(x, t) \quad$ for x in $T_{N}, \quad t>0, \quad$ and $\quad k=1,2, \ldots$.
Next, recalling the definition of $Z_{\rho(j)}$, we see that if x^{0} is in Z, there exists $B^{T}\left(x^{0}, r\right)$ with $r>0$ such that $B^{T}\left(x^{0}, r\right) \subset Z_{\rho(j)}$. Also it follows from (3.12) that $U_{\rho(j)}$ takes the constant value $I\left(\mu_{\rho(j)}\right)$ in $B^{T}\left(x^{0}, r\right)$. Consequently, we obtain from [7, p. 56] that $U_{\rho(j)}\left(x^{0}, t\right) \rightarrow I\left(\mu_{\rho(j)}\right)$ as $t \rightarrow 0$. We conclude from (3.16) that

$$
\begin{equation*}
\lim _{i \rightarrow 0} f_{k}(x, t)=\sum_{j=1}^{k}\left[I\left(\mu_{\rho(j)}\right)\right]^{1 / 2} / j^{2} \quad \text { for } x \text { in } Z \tag{3.28}
\end{equation*}
$$

From (3.27) and (3.28), we next obtain that

$$
\begin{equation*}
\liminf _{t \rightarrow 0} f(x, t) \geqslant \sum_{j=1}^{k}\left[I\left(\mu_{\rho(j)}\right)\right]^{1 / 2} / j^{2} \quad \text { for } x \text { in } Z \text { and } k=1,2, \ldots \tag{3.29}
\end{equation*}
$$

But (3.20) follows immediately from (3.15) and (3.29), and the proof of the theorem is complete.

References

1. A. Beurling, Sur les ensembles exceptionels, Acta Math. 72 (1940), 1-13.
2. S. Bochner, "Harmonic Analysis and the Theory of Probability," Univ. of Calif. Press, Berkeley, CA, 1955.
3. L. Carleson, "Selected Problems on Exceptional Sets," Van Nostrand, Princeton, NJ, 1967.
4. O. Frostman, Potentiel d'équilibre et capicité des ensembles avec quelque applications à la théorie des fonctions, Comm. of the Math. Seminar of the Univ. of Lund, 3 (1935), 1-118.
5. J. P. Kahane and R. Salem, "Ensembles parfait et séries trigonometriques," Actualités Scientifiques et Industrielles 1301, Hermann, Paris, 1963.
6. G. E. Lippman, A convergence problem for a certain class of multiple Fourier series, Chapter II, Ph.D. Dissertation, University of California, Riverside, 1970, pp. 46-66.
7. V. L. Shapiro, Fourier series in several variables, Bull. Amer. Math. Soc. 70 (1964), 48-93.
8. A. Zygmund, "Trigonometric Series," Vol. 1, Cambridge Univ. Press, New York N. Y., 1959.

[^0]: * The research of the second author was sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant No. AF-AFOSR 71-2046. The United States Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation hereon.

